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SUMMARY 
A method of efficiently computing turbulent compressible flow over complex two-dimensional configura- 
tions is presented. The method makes use of fully unstructured meshes throughout the entire flow field, thus 
enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques 
throughout both viscous and inviscid regions of the flow field. Mesh generation is based on a locally mapped 
Delaunay technique in order to generate unstructured meshes with highly stretched elements in the viscous 
regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid conver- 
gence to steady state is achieved using an unstructured multigrid algorithm. Turbulence modelling is 
performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. 
Compressible turbulent flow solutions about multiple-element aerofoil geometries are computed and 
compared with experimental data. 
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1. INTRODUCTION 

Although unstructured mesh techniques have been employed extensively in fields such as solid 
modelling and computational structural mechanics for many years, their use in the field of 
computational fluid dynamics (CFD) constitutes a relatively recent phenomenon. This situation 
is probably due to the large overheads generally incurred with unstructured mesh techniques, 
which can become unacceptable when coupled with the large computational requirements of 
many CFD problems. The advantages of unstructured meshes lie in the ability they afford for 
flexibly discretizing arbitrarily complex geometries and in the ease with which they lend them- 
selves to adaptive meshing techniques, which can be employed to accurately resolve complex 
flows in an efficient manner. In recent years much progress has been made in developing more 
sophisticated unstructured mesh generation strategies for computational fluid dynamics prob- 

as well as in the development of novel and efficient flow solution algorithms?-’ 
However, much of this effort has been directed at two- and three-dimensional inviscid flow 
problems. The solution of high-Reynolds-number viscous flows, which are of much greater 
practical interest, introduces additional complications with regards to mesh generation and 
turbulence modelling. Most attempts at solving viscous flows using unstructured meshes have 
resorted to hybrid structured-unstructured meshes, where a thin structured mesh is placed in the 
boundary layer and wake regions and an unstructured mesh is employed in the regions of inviscid 
flow.**’ This type of compromise, however, limits the flexibility of the original unstructured 
approach. Geometries with close tolerances, where confluent wakes and boundary layers occur, 
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may prove difficult to discretize with a hybrid approach, and the task of performing adaptive 
meshing throughout the viscous and inviscid regions of flow can be considerably more complex. 

This paper describes a method for computing compressible turbulent viscous flows about 
arbitrary two-dimensional configurations using fully unstructured meshes and incorporating 
adaptive meshing techniques. The generation of meshes with highly stretched triangular elements 
in the boundary layer and wake regions is accomplished with a method based on a modified 
Delaunay triangulation technique.' The full Navier-Stokes equations are discretized and solved 
for on these meshes using an efficient finite element solver which converges rapidly to steady state 
using an unstructured multigrid strategy. ' ' Turbulence modelling is achieved using an inexpens- 
ive algebraic model which has been devised specifically for use on unstructured and adaptive 
meshes." 

2. MESH GENERATION 

2.1. Initial mesh generation 

The initial unstructured mesh is generated in three essentially independent stages. First, 
a distribution of mesh points and associated stretching vectors is generated throughout the flow 
field. These points are then joined together in a manner influenced by the local stretching values 
to form a set on non-overlapping triangular elements which completely fill the domain. The 
resulting mesh is then smoothed by slightly repositioning the mesh points according to an elliptic 
smoothing operator discretized on the new mesh. 

Although adaptive meshing techniques can be relied upon to increase the mesh resolution in 
regions of strong flow gradients, a good initial mesh point distribution is essential in order to 
initially capture all the salient features of the flow and to reduce the number of flow solution 
adaptivity cycles required to converge the accuracy of the solution process. This is especially true 
in the case of high-Reynolds-number viscous flows, where a highly stretched, densely packed 
distribution is required to efficiently resolve the thin shear layers. The initial distribution of mesh 
points is generated in a geometry-adaptive manner. Points are positioned along all flow field 
boundaries and along wake lines in a manner which is governed by the local rate of change of 
slope of the boundary curve and the thickness (height) of the elements to be generated at the 
boundary. The effect of this distribution method is to cluster points in regions of high boundary 
curvature and sharp corners, where large flow gradients are expected, as well as to reduce the 
stretching of the mesh in such regions. 

A distribution of interior points is then constructed by generating a series of local hyperbolic 
structured meshes for each boundary curve or wake line using the previously generated boundary 
point distribution as an initial condition and prescribing a normal spacing of points as a function 
of the Reynolds number of the flow to be computed.13 The union of all the points contained in the 
various overlapping hyperbolic meshes is then used as the basis for the triangulation. A value of 
stretching is required at each mesh point and this may be computed from the local ratio of the 
streamwise to normal point spacings in the local structured meshes, as shown in Figure 1. Initial 
point clustering in wake regions is achieved by drawing fictitious boundaries which approximate 
the estimated positions of the wakes. The position of these approximate wake lines is obtained by 
solving the corresponding inviscid flow problem using an inexpensive panel method ~olution. '~ 

A point-filtering operation based on the aspect ratios of the structured local hyperbolic mesh 
cells is also employed to remove excessive points in the regions of inviscid flow. The structured 
mesh cell aspect ratios, as measured by the ratio of streamwise to normal mesh spacing, are large 
near the geometry walls and wake lines and decrease gradually towards the far field. In regions 
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Figure 1. Overlapping structured C-meshes for multielement aerofoil geometry providing initial definition of mesh point 
distribution and local stretching factors 

where these aspect ratios become smaller than unity, the streamwise point distribution is 
coarsened by removing selected points, thus maintaining a nearly isotropic point distribution in 
the inviscid regions of flow. This filtered set of mesh points is then triangulated using a modified 
Delaunay triangulation criterion." In its original form a Delaunay triangulation of a given set of 
points tends to produce the most equiangular triangles possible and is thus not well suited for the 
generation of highly stretched triangulations. The Delaunay criterion is thus modified according 
to the local stretching values. The local stretching value is used to define a stretched space within 
which the local mesh point distribution appears more isotropic. The Delaunay triangulation of 
the points in this stretched space is then constructed. This connected set of points is subsequently 
mapped back into physical space, thus producing the desired stretched triangulation. The actual 
construction of the stretched triangulation is performed in a two-stage process. A regular 
Delaunay triangulation of the mesh points in physical space is initially constructed using 
Bowyer's algorithm.' This initial triangulation is conveniently used to Bmooth the distribution of 
stretchings throughout the flow field by providing the basis for discretizing a smoothing operator 
which is then applied to the stretching values. This Delaunay triangulation is then transformed 
into a modified (stretched) Delaunay triangulation, based on the smoothed local stretching 
distribution, by swapping the diagonals according to the Delaunay maximum-minimum angle 
criterion'O applied in the stretched space. This criterion provides a basis for deciding whether or 
not an edge should be swapped by choosing the configuration which maximizes the smallest of 
the angles formed between the edge to be swapped and its immediate neighbours. 

A regular Delaunay triangulation of a set of points produces a smoothly varying mesh 
provided that the mesh points are initially distributed evenly and isotropically. Similarly, 
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a stretched or modified Delaunay triangulation of a set of points will result in a smoothly varying 
stretched mesh provided the mesh point and stretching distributions are closely coupled and 
provided that the stretching distribution varies slowly with respect to the local mesh element size. 
The geometry-adaptive mesh point distribution and the point-filtering operation previously 
described have thus been designed to ensure that these criteria are satisfied. 

Finally, the stretched triangulation can be smoothed in a postprocessing operation by slightly 
repositioning the points according to a smoothing operator discretized on the mesh. Once the 
points have been displaced, the mesh may no longer obey the modified Delaunay criterion; thus 
the edges may be swapped to recover this property. Multiple smoothing and edge-swapping 
passes may then be employed to further smooth the mesh. 

2.2. Adaptive meshing procedure 

Once the initial stretched unstructured mesh has been generated and the flow field has been 
solved for on this mesh, a new adaptively refined mesh may be constructed by adding new points 
to the initial mesh in regions where large flow gradients or discretization errors are detected and 
locally restructuring the mesh. In this work the refinement criterion is based on the undivided 
difference of pressure and Mach number. Pressure gradients provide a good indication of inviscid 
flow phenomena such as shocks and expansions, while Mach number variations can be used to 
identify viscous phenomena such as boundary layers and wakes. Although the mesh point 
distribution can be refined in the adaptation process, the stretching distribution is held fixed. 
Thus, in order to maintain a close coupling between the final mesh point distribution and the 
stretching distribution, an isotropic refinement strategy must be adopted. The variations of 
pressure and Mach number within each triangular element of the mesh are examined. When these 
are larger than some fraction of the average variations of pressure and Mach number over all cells 
of the mesh, three new mesh points are created, one at the midpoint of each of the three edges 
of the cell. Each new mesh point is assigned a stretching value taken as the average of the 
stretchings of the two points at either end of the generating mesh edge. The new points are then 
inserted into the existing mesh by locally restructuring the mesh according to Bowyer’s algorithm 
in the stretched space.I5 For each new mesh point the triangles whose circumcircles are 
intersected by this new point are located. The union of all intersected triangles forms a convex 
polygonal region which contains the new point. The existing structure in this region is removed 
and a new structure is constructed by joining the new point to all the vertices of this polygonal 
region, as shown in Figure 2. By simultaneously refining all three sides of a mesh element and by 
assigning average stretching values to the new points, directional biasing of the refinement 
process is avoided and a smooth distribution of stretching is maintained. The use of Bowyer’s 
algorithm in the stretched space, which provides an effective method for constructing a stretched 
Delaunay triangulation through sequential point insertion and retriangulation, constitutes an 
ideal adaptive mesh enrichment strategy and obviates the need for global mesh regeneration. 

When new boundary points are introduced, they must be repositioned on the spline definition 
of the geometry boundary. For curved surfaces this will not coincide with the midpoint of the 
original boundary mesh edge. For highly stretched meshes the distance between these two 
locations may in fact be much larger than the average width of the elements in the vicinity of the 
boundary and a restructuring of the entire region is required, as shown in Figure 3. This is 
accomplished by drawing the line joining the midpoint of the boundary edge being refined to the 
spline-displaced position of this new boundary point. The union of all triangular mesh elements 
intersected by this line, as well as elements whose circumcircles are intersected by the spline- 
displaced boundary point, is tagged for reconstruction. This entire region is then restructured via 
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Figure 2. Illustration of Bowyefs algorithm for Delaunay triangulation 

the standard Bowyer algorithm, i.e. removing all mesh edges in this region and forming a new 
structure by joining up the new mesh point to all the vertices of the polygonal region. 

3. FLOW SOLUTION 

In non-dimensional conservative vector form the Navier-Stokes equations read 

1 aw 
-+V.F, =- V - Fv, 
at Re,  

where Re, denotes the overall flow Reynolds number and w represents the conserved variables 

w = (  q, 
PE 
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Figure 3. Illustration of adaptive boundary point insertion and local mesh restructuring in regions of high mesh 
stretching and high boundary curvature 

p being the fluid density, u and D the Cartesian velocity components and E the internal energy. 
F, represents the convective flux vector, the components of which are algebraic functions of the 
conserved variables and the pressure, which itself can be related to the conserved variables 
through the perfect gas relation. F, denotes the viscous flux vector, the components of which are 
functions of the first derivatives of the conserved variables. Equation (1) represents a set of partial 
differential equations which must be discretized in space in order to obtain a set of coupled 
ordinary differential equations, which can then be integrated in time to obtain the steady state 
solution. Space discretization is performed using a Galerkin finite-element-type formulation. 
Multiplying equation (1) by a test function 4 and intergrating over physical space yields 

Integrating the flux integrals by parts and neglecting boundary terms gives 

In order to evaluate the flux balance equations at a vertex P, 4 is taken as a piecewise linear 
function which has the value unity at node P and vanishes at all other vertices. Therefore the 
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Figure 4. Domain of influence of finite element basis function and equivalent finite volume control volume 

integrals in the above equation are non-zero only over triangles which contain the vertex P, thus 
defining the domain of influence of node P, as shown in Figure 4. To evaluate the above integrals, 
we make use of the fact that cPx and 4,, are constant over a triangle and evaluate spatial derivatives 
of and w over a triangle using vertex values by Green’s countour integral theorem. The 
convective fluxes F, are taken as piecewise linear functions in space and the viscous fluxes F, are 
piecewise constant over each triangle since they are formed from first derivatives in the flow 
variables. Evaluating the flux integrals with these assumptions, one obtains 

where the summations are over all triangles in the domain of influence, as shown in Figure 4. 
A L A B  represents the directed (normal) edge length of the face of each triangle on the outer 
boundary of the domain, Ff and F: are the convective fluxes at the two vertices at either end of 
this edge and F: is the viscous flux in triangle e, e being a triangre in the domain of influence of 4. 
If the integral on the left-hand side of equation ( 5 )  is evaluated in the same manner, the time 
derivatives become coupled in space. Since we are not interested in the time accuracy of the 
scheme but only in the final steady state solution, we employ the concept of a lumped mass 
matrix. This is equivalent to assuming w to be constant over the domain of influence while 
integrating the left-hand side. Hence we obtain 
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where the factor of 1/3 is introduced by the integration of 4 over the domain, and !&. represents 
the surface area of the domain of influence of P. For the convective fluxes this procedure is 
equivalent to the vertex finite volume formulation described in References 4 and 5. For a 
smoothly varying regular triangulation the above formulation is second-order-accurate. 

Additional artificial dissipation terms are required to ensure stability and to capture shocks 
without producing numerical oscillations. This is necessary for both inviscid and viscous flow 
computations, since in the latter case large regions of the flow field behave essentially inviscidly 
and the physical viscosity is not sufficient to guarantee numerical stability for the type of mesh 
spacings typically employed. Artificial dissipation terms are thus constructed as a blend of 
a Laplacian and a biharmonic operator in the conserved flow variables. The Laplacian term 
represents a strong, formally first-order-accurate dissipation which is turned on only in the 
vicinity of a shock, while the biharmonic term represents a weaker second-order-accurate 
dissipation which is employed in regions of smooth flow.5* The spatially discretized equations 
are integrated in time to obtain the steady state solution using a five-stage time-stepping scheme, 
where the convective terms are evaluated at each stage within a time step and the dissipative 
terms (both physical and artificial) are only evaluated at the first, third and fifth stages. This 
particular scheme has been designed to maintain stability in regions where the flow is dominated 
by viscous effects and to rapidly dampen out high-frequency error components, which is an 
essential feature for a scheme intended to drive a multigrid algorithm. Convergence is accelerated 
by making use of local time stepping, implicit residual averaging and an unstructured multigrid 
algorithm." 

The idea of a multigrid strategy is to accelerate the convergence to steady state of a fine grid 
solution through corrections computed on coarser grids. An initial time step is performed on the 
fine grid and the flow variables and residuals are then transferred to the coarse grid. A correction 
equation is constructed on the coarse grid by adding a forcing function to the original discretized 
equations. This forcing function is formed by taking the difference between the transferred 
residuals and the residuals of the transferred variables, thus ensuring that the evolution of the 
coarse grid equations is driven by the fine grid residuals. Hence, when the fine grid residuals 
vanish, the coarse grid equations are identically satisfied and generate zero corrections. After 
transferring values down from the fine grid, a time step is performed on the coarse grid and the 
new values are transferred down to the next coarser grid. When the coarsest grid is reached, the 
computed corrections are successively interpolated back up to the finest grid and the entire cycle 
is repeated. In the context of unstructured meshes a sequence of coarse and h e  meshes is best 
constructed by generating the individual meshes independently from one another (as opposed to 
subdividing a coarse mesh). Thus, in general, the coarse and fine meshes of a given sequence do 
not have any common mesh points or nested elements. Thus the patterns for transferring the 
variables, residuals and corrections back and forth between the various meshes of the sequence 
must be determined in a preprocessing operation, where an efficient tree search algorithm is 
empl~yed.~ 

Such a multigrid algorithm may be combined with an adaptive meshing strategy in a natural 
manner. First, a sequence of globally generated meshes is constructed and multigrid time stepping 
is performed on this sequence until a satisfactorily converged solution is obtained. At this point 
a new adaptively refined mesh is generated and the transfer patterns for transferring variables 
from the previous mesh to the new mesh are determined. The flow variables are then transferred 
to this new mesh, providing a starting solution, and multigrid time stepping is resumed on this 
new sequence which now contains an additional fine mesh. The process may be repeated, as 
shown in Figure 5, each time adding a new h e r  mesh to the sequence until a converged solution 
of the desired accuracy is obtained. 
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Figure 5. Full multigrid algorithm employed in conjunction with adaptive meshing strategy 

4. TURBULENCE MODELLING 

4.1. General procedure 

The most widespread turbulence models in use currently are either of the multiple-field- 
equation type or of the algebraic type. While field equation models (such as the K--E model) can be 
discretized and solved for on unstructured meshes in a straightforward manner, the solution of 
additional field equations can be considerably expensive, especially in near-wall regions where the 
equations may become very stiff numerically. Algebraic models, on the other hand, are relatively 
inexpensive to compute and have demonstrated generally superior accuracy and reliability for 
limited classes of problems, such as high-Reynolds-number attached flows over streamlined 
bodies. However, such models typically require information concerning the distance of each mesh 
point from the nearest wall. Turbulence length scales, which are related to the local boundary 
layer or wake thickness, are determined by scanning the appropriate flow values along specified 
streamwise stations. In the context of unstructured meshes, mesh points and thus flow variables 
do not naturally occur at regular streamwise locations. Thus lines normal to the walls and viscous 
layers must be created and flow variables interpolated onto these lines in order that turbulence 
length scales may be determined. This type of approach has previously been implemented for 
supersonic ramp geometries by Rostand.16 However, in the present work, more complex geo- 
metries must be accommodated. A more sophisticated manner of generating normal mesh 
stations can be devised using structured hyperbolic mesh generation techniques.' Thus a distri- 
bution of normal mesh lines which do not cross over each other, and containing a smoothly 
varying normal distribution of points, can be obtained by generating a structured hyperbolic 
mesh about each geometry component, based on the boundary point distribution of the global 
unstructured mesh on each component.12 These normal mesh lines are terminated if they 
intersect a neighbouring geometry component, thus ensuring that turbulence quantities in any 
given region of the flow field are only dependent on the viscous layers and walls which are directly 
visible from that location (compare Figures 7 and 12). At each time step in the flow solution 
phase, flow variables are interpolated onto the background turbulence mesh stations and the 
Baldwin-Lomax' ' algebraic model is employed to compute eddy viscosity values along these 
stations. The standard Baldwin-Lomax model must be modified slightly in order to enable the 
treatment of flows with multiple boundary layers and wakes. Thus the search for the maximum 
moment of vorticity, which is usually employed to determine a turbulence length scale, is limited 
to the region between the wall (or wake centreline) and the first point of vanishing vorticity off the 
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wall (or wake centreline). Since a change in sign of the vorticity occurs in the region between two 
confluent shear layers, turbulence length scales associated with vorticity fluctuations due to 
neighbouring shear layers are ignored in this manner. The eddy viscosities are then interpolated 
back onto the unstructured mesh for subsequent use in the flow solver. In regions where multiple 
background turbulence meshes overlap, the multiple eddy viscosity values (one from each mesh) 
interpolated back to the unstructured mesh are weighted by a factor proportional to the inverse 
of the distance from the corresponding wall, thus producing a smooth distribution of eddy 
viscosity throughout the flow field. Flow variables can be repeatedly interpolated back and forth 
between the background turbulence mesh stations and the global unstructured mesh by comput- 
ing and storing the interpolation weights and addresses in a preprocessing operation prior to the 
flow solution phase. This is accomplished by first triangulating the point distribution of the local 
background turbulence meshes and then making use of the same efficient search routines 
employed in the unstructured multigrid transfer process. 

4.2. Adaptive meshing procedure 

When an adaptive meshing strategy is employed, the background turbulence meshes must be 
adapted in a manner analogous to the refinement of the global unstructured mesh. A refinement 
field variable is thus constructed which is assigned the value 1.0 in regions where the unstructured 
mesh is refined and 0.0 in the remainder of the flow field. This variable is then interpolated onto 
the background turbulence meshes and used to determine the regions which require refinement. 
Since these background meshes have previously been triangulated for interpolation purposes, 
they may be refined by inserting new points and restructuring locally using Bowyer's Delaunay 
triangulation alg~ri thm'~ as described previously. However, these new points must be added in 
a manner which preserves the original structure (that of normal mesh stations) of the background 
meshes. Hen& only new points along existing mesh stations are permitted, and when a new 
boundary point is inserted, an entire new turbulence mesh station extending up to the outer 
boundary of the background mesh is created." 

After each adaptation process the transfer patterns for interpolation between the newly refined 
global unstructured mesh and background meshes must be recomputed. In the context of the 
multigrid strategy the turbulence model is only executed on the finest grid of the sequence. The 
computed eddy viscosity values are then interpolated up to the coarser unstructured meshes 
where they are employed in the multigrid correction equations. The whole process is very efficient 
and, in general, the turbulence model is found to require less than 10% of the total time required 
within a single multigrid cycle. Memory requirements are, however, increased by close to 50%, 
since extra variables and transfer coefficients must be stored for the background turbulence mesh 
stations. 

5. RESULTS 

5.1. Single-aerofoil geometry 

As an initial test case the turbulent flow over an RAE 2822 aerofoil has been computed. The 
freestream Mach number is 0.729, the Reynolds number is 6.5 x lo6, the corrected incidence is 
2.31" and transition is fixed at 0-03 chords. This constitutes a well documented test case (Case 6) 
for turbulent transonic flow" which can be used to validate the present solver. The unstructured 
mesh employed for this case is depicted in Figure 6. This mesh contains 13 751 points, of which 
210 are on the aerofoil surface. The average normal spacings of the triangles on the aerofoil 
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Figure 6. Fully unstructured mesh with high stretching employed for computing turbulent flow past an RAE 2822 
aerofoil (number of points= 13 751) 

surface is 0.00001 chords, resulting in cell aspect ratios of the order of 1000 : 1 near the wall. The 
background turbulence mesh stations employed for computing the algebraic turbulence model, 
which contain a total of 13 372 points, are depicted in Figure 7. The computed surface pressure 
distribution and skin friction distribution are displayed in Figures 8 and 9 respectively, where 
they are compared with experimental data from Reference 18. Both quantities are seen to 
compare favourably with the experimental results, and the computed lift coefficient of 0.7403 is 

1 
Figure 7. Turbulence stations employed for computing flow past an RAE 2822 aerofoil (number of points = 13 372) 
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Figure 8. Comparison of computed surface pressure with experimental measurements for flow over an RAE 2822 aerofoil 
(Mach=0.729, Re=6.5 x lo6, incidence=2.3l0) 
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Figure 9. Comparison of computed skin friction with experimental measurements for flow over an RAE 2822 aerofoil 
(Mach = 0.729, Re = 6 3  x lo6, incidence = 2.31 ") 
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well within the range reported in previously published computational solutions using structured 
meshes.lg A total of five meshes were employed in the multigrid sequence, with the coarsest mesh 
containing only 98 points. The convergence rate for this case, as measured by the decrease in the 
RMS average of the density residuals throughout the flow field, versus the number of multigrid 
cycles is depicted in Figure 10. An average residual reduction of 0955 per multigrid cycle is 
achieved on the finest grid, resulting in a decrease of the residuals by four orders of magnitude 
over 200 cycles. Furthermore, the lift and drag coefficients were converged to four significant 
figures within 90 cycles. Since each multigrid cycle requires roughly 1.4 CPU seconds on a single 
processor of the CRAY-YMP computer, engineering solutions could thus be obtained in 
approximately 2 min for this case. 

5.2. Two-element aerofo?l geometry 

The next test case consists of a main aerofoil with a leading edge slat, which has been the 
subject of extensive wind tunnel tests as part of a programme aimed at determining the 
effectiveness of slats as manoeuvring devices for fighter aircraft.2o The test conditions consist of 
a freestream Mach number of 0.5, a chord Reynolds number of 4-5 x lo6 and a corrected 
incidence of 7.5". Under these conditions the flow becomes supercritical and a small shock is 
formed on the upper surface of the slat. The adapted mesh used to compute this flow is depicted in 
Figure 11. The mesh contains a total of 35 885 points, of which 418 are on the surface of the main 
aerofoil and 421 on the surface of the slat. The minimum normal spacing at the wall is O~oooO1 
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Figure 10. Convergence rate for flow over an RAE 2822 aerofoil as measured by the RMS average of the density residuals 
versus the number of rnultigrid cycles 
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(b) 

Figure 11. Adaptively generated unstructured mesh about twoelement aerofoil (number of nodes = 35 885) 

chords and cells of aspect ratios up to 1000: 1 are observed. A total of seven meshes were 
employed in the multigrid sequence, with the last three meshes generated adaptively. Figure 12 
illustrates the adaptively generated turbulence mesh stations employed by the algebraic turbu- 
lence model for this case. The computed Mach contours in the flow field are depicted in Figure 13, 
where a crisp resolution of the small localized shock provided by the adaptive meshing technique 
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Figure 12. Illustration of turbulence mesh stations employed in algebraic model (number of points=43 566) 

is observed. A good correlation between the computed and experimental surface pressure coeffi- 
cients is displayed in Figure 14. This method predicts a small zone of separated flow behind the 
shock, which has not been detected in previous calculations,20 while also providing a more 
accurate prediction of shock location and subsequent pressure recovery. The solution of this case 
required 15 min on a single processor of a CRAY-YMP, during which the fine grid residuals were 
reduced by three orders of magnitude over 200 multigrid cycles, as shown in the convergence 
history plot of Figure 15. 

5.3. Four-element aerofoil geometry 

The final test case consists of a four-element aerofoil configuration. This represents a truly 
complex geometry involving regions with sharp corners which is not easily amenable to struc- 
tured mesh techniques and is of considerable practical interest since it relates to the design of 
high-lift devices for commercial aircraft. A multigrid sequence of six meshes was employed to 
compute the flow over this configuration, with the last two meshes generated adaptively. The 
finest mesh of the sequence, which contains a total of 48 691 points, is depicted in Figure 16. The 
mesh contains 243 points on the main aerofoil, 327 points on the leading edge slat, with 208 and 
247 points located on the vane and flap respectively. The height of the smallest cells at the wall is 
of the order of O.ooOo2 chords for each aerofoil element and cell aspect ratios up to 500:l are 
observed. The computed Mach contours for this case are depicted in Figure 17. The freestream 
Mach number is 0.1995, the chord Reynolds number is 1.187 x lo6 and the corrected incidence is 
16-02". Under these conditions the flow remains entirely subcritical. Compressibility effects are 
nevertheless important owing to the large suction peaks generated about each aerofoil. For 
example, in the suction peak on the upper surface of the leading edge slat the local Mach number 
achieves a value of 0.77. The computed surface pressure coefficients are compared with experi- 
mental wind tunnel data2' in Figure 18. Good overall agreement, including the prediction of the 
height of the suction peaks, is observed. This case provides a good illustration of the importance 
of adaptive meshing in practical aerodynamic calculations. Adequate resolution of the strong 
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(b) 

Figure 13. Computed Mach contours for flow over a two-element aerofoil configuration (Mach=05, Re=4*5 x lo6, 
incidence = 7.5”) 

suction peak on the upper surface of the slat can only be achieved with a very fine mesh resolution 
in this region. Failure to adequately capture this large suction peak results in the generation of 
numerical entropy, which is then convected downstream, thus contaminating the solution in the 
downstream regions and degenerating the global accuracy of the solution. Because these suction 
peaks are very localized, they are efficiently resolved with adaptive techniques. In order to obtain 
a similar resolution using global mesh refinement, of the order of 2OOO00 mesh points would be 
required, greatly increasing the cost of the computation. The convergence history for this case, as 
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Figure 14. Comparison of computed surface pressure distribution with experimental wind tunnel data for flow over 
two-element aerofoil configuration (Mach =05, Re=4.5 x lo6, incidence= 7.5") 



(4 
Figure 16. Adaptively generated unstructured mesh about four-element aerofoil (number of nodes = 48 691) 
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measured by the density residuals and the total lift coefficient versus the number of multigrid 
cycles, is depicted in Figure 19. A total of 400 multigrid cycles were executed, which required 
roughly 35 min of single-processor CRAY-YMP time and 14 Mwords of memory. 

6. CONCLUSIONS 

A method for efficiently computing turbulent compressible flows over complex two-dimensional 
configurations has been presented. By employing fully unstructured meshes throughout the entire 
flow field, arbitrary geometries can be handled and adaptive meshing techniques may be 

(b) 

Figure 17. (Continued) 
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Figure 17. Computed Mach contours for flow over four-element aerofoil (Mach=@1995, Re=1.187x lo6, incid- 
ence = 1602”) 

Figure 18. Comparison of computed surface pressure distribution with experimental wind tunnel data for flow over 
four-element aerofoil configuration (Mach =01995, Re= 1.187 x lo6, incidence= 16.02O) 
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Figure 19. Convergence as measured by the computed lift coefficient and the density residuals versus the number of 
multigrid cycles for flow past a four-element aerofoil 

extensively exploited. The method is efficient in that engineering solutions may generally be 
obtained in less than 100 multigrid cycles and the turbulence model requires less than 10% of the 
total time required to compute a solution. Unstructured mesh algorithms incur substantial 
overheads owing to the random nature of their datasets and generally run up to three times 
slower than their structured counterparts on present-day supercomputers owing to the indirect 
addressing and gather-scatter operations which must be employed. However, adaptive meshing 
techniques enable the accurate resolution of complex flow fields with a relatively small number of 
points, easily outweighting the penalties incurred by the use of random datasets. In the future an 
adaptive meshing technique capable of modifying the local mesh stretching as well as the mesh 
point distribution should be pursued. Further turbulence-modelling research is also required, 
either refining the current algebraic model or implementing an alternative field equation model 
for cases with large regions of separated flows. 
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